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Abstract  
Prominent financial stock pricing models are built on assumption that asset returns follow a normal 
(Gaussian) distribution. However, many authors argue that in the practice stock returns are often 

characterized by skewness and kurtosis, so we test the existence of the Gaussian distribution of stock returns 

and calculate the kurtosis of several stocks at the Macedonian Stock Exchange (MSE). Obtaining information 
about the shape of distribution is an important step for models of pricing risky assets. The daily stock returns 

at Macedonian Stock Exchange (MSE) are characterized by high volatility and non-Gaussian behaviors as 

well as they are extremely leptokurtic. The analysis of MSE time series stock returns determine volatility 
clustering and high kurtosis. The fact that daily stock returns at MSE are not normally distributed put into 

doubt results that rely heavily on this assumption and have significant implications for portfolio management. 

We consider this stock market as good representatives of emerging markets. Therefore, we argue that our 

results are valid for other similar emerging stock markets.  
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INTRODUCTION 

 

For a long time Gaussian models (Brownian motion) were applied in economics and 

finances and especially to model of stock prices return. However, in the practice, real 

data for stock prices returns are often characterized by skewness, kurtosis and have 

heavy tails. Many financial economists argue and provide empirical evidences that 

some stock prices returns are not distributed by Gaussian distribution because of fat 

tails and strong asymmetry and argue that they are leptokurtic.  
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We can find in finance literature many different models that have been proposed to 

deal with these departures from Gaussian distribution like following: stable symmetric 

(stable Paretian) distributions for stock returns, the Student t, the generalized beta 

distribution of the second kind and mixtures of Gaussian distribution (Mills 1995). All 

above mentioned three competing hypothesis have subsequently been used to explain 

this observed tail behavior of security returns. 

Kurtosis as statistical measure has significant importance for investors, because 

represent the possibility of the price of stocks to change significantly (up or down from 

current levels). Obtaining information about the shape of distribution is an important 

step for models of pricing risky assets where distribution and estimates of volatility are 

used as inputs (Ivanovski, Narasanov, and Ivanovska 2015). 

In this paper we test the existence of the Gaussian distribution of stock returns and 

calculate the kurtosis of several stocks at the Macedonian Stock Exchange (MSE). 

MSE is emerging stock market with very low liquidity. The aim of this study is to 

determine the kurtosis of several stocks at MSE and to test if this measure provides 

signals for future behavior of stock prices at MSE. The basic idea is to test 

functionality of this measure as additional parameter for the stock pricing process. The 

purpose of this paper is also to contribute to the debate concerning the relationship 

between returns and volatility for the emerging markets of the Central and Eastern 

Europe. 

We address the following research questions: Are there notable differences between 

kurtosis of stocks as the parameters of stock pricing models for MSE? What is the level 

of volatility on MSE? What is the practical use of kurtosis as indicator for stock prices 

movements at MSE? 

While we draw our conclusions from the historical data on MSE, we consider this 

stock market as good representatives of emerging markets. Therefore, we argue that 

our results are valid for other similar emerging stock markets. 

The remainder of the paper is organized as follows. In Section I we give summary 

of literature overview concerning stock return distributions, presenting different models 

from Gaussian distribution, like the stable symmetric (stable Paretian) distributions for 

stock returns, the Student t, the generalized beta distribution of the second kind and 

mixtures of Gaussian distribution as well as explanation of kurtosis as a statistical 

measure. In second part of this section we address literature overview about volatility 

for MSE. Section II describes tools used in research for derivation of stochastic 

parameters. In Section III we present the results on the derivation of stochastic 

parameters from the analysis of historical data from MSE. Section IV gives conclusions 

and possible directions for future research. 

 

 
1. LITERATURE REVIEW  

 

At the begging of the 20th century Louis Bachelier (1900) published the first paper 

where advanced mathematics was used in the study of finance. His model for stochastic 

process, now called Brownian motion, has since than become the dominant model for 

stock pricing processes of modern finance. Stock valuation models are built on 

assumption for the normal (Gaussian) distribution: Markowitz Portfolio Theory 

(Markowitz 1952; 1959), Capital Asset Pricing Model (Sharpe 1964), Option Pricing 

Theory (Black and Scholes 1973). That overcome previously widely accepted 
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hypothesis that rational investors' preferences can be analyzed only in terms of 

expected returns and risk measured by the variance and standard deviation of the return 

distribution. 

However, risk models are widely used in stock valuation in order to provide a 

measure of risk necessary for portfolio selection and optimization, risk management, 

and derivatives pricing.  

A risk model is typically a combination of a probability distribution model and a 

risk measure and provide following: first, calculate returns' temporal dynamics, such as 

autocorrelations, volatility clustering, and long memory, second, employs a 

distributional assumption flexible enough to accommodate various degrees of skewness 

and heavy-tails, third, is scalable and practical and can be extended to a multivariate 

model covering a large number of assets (Rachev and Mittnik 2000). 

Markowitz Portfolio Theory (MPT) used an asset's return as a normally distributed 

function. This theory calculate risk as the standard deviation of return as well the return 

of a portfolio as the weighted combination of the assets' returns. MPT suggest 

possibility to reduce the total variance of the portfolio return by adding different assets 

with returns that are not perfectly positively correlated. This theory also has basic 

assumption that investors are rational and markets are efficient (Chamberlain 1983). 

Although MPT was developed in the 1950s, through the 1970s it gained popularity and 

was considered as a basis for portfolio management. However, since then, many 

theoretical papers and practical considerations provided many evidences against it 

esspecially that financial returns do not have a Gaussian distribution or any symmetric 

distribution. In many empirical studies it was noticed that returns of stocks (indexes, 

funds) are badly fitted by Gaussian distribution because of heavy tails and strong 

asymmetry (Mandelbrot 1960; 1963). Some authors (Mandelbrot and Hudson 2006) 

elaborates that random walk and Gaussian daily returns simply do not correspond to 

reality, and grossly underestimates the risk of huge market swings.  

Fama (Fama 1965) reported that daily returns of stocks on the Dow Jones Industrial 

Average (DJIA) display more kurtosis than permitted under the normality hypothesis. 

Since that early work of Fama, it has typically been found that daily returns display 

more kurtosis than that permitted under the assumptions of normality, while skewness 

has also been prevalent (Mills 1995). The expected returns and variances are almost 

always estimated using past returns rather than future returns.  

The bias towards positive or negative returns is represented by the skewness of the 

distribution. If distribution is positively skewed, there is higher probability of large 

positive returns than negative returns. The shape of the tails of the distribution is 

measured by the kurtosis of the distribution; fatter tails lead to higher kurtosis. 

(Damodaran 2006). 

Normal distributions are symmetric (no skewness) and defined to have a kurtosis of 

zero. When return distributions take this form, the characteristics of any investment can 

be measured with two variables - the expected return, which represents the opportunity 

in the investment, and the standard deviation or variance, which represents the level of 

danger. (Damodaran 2006)  

Investors who are usually risk averse prefer positive skewed distributions to 

negatively skewed ones as well as distributions of returns with a lower possibility for 

significant price changes (lower kurtosis) to those with a higher possibility of jumps 

(higher kurtosis). The coefficient of skewness gives information on the distribution of 

the returns of each stock (Skrinjaric 2014). When the distribution is positively skewed, 

http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Risk
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Homo_economicus
http://en.wikipedia.org/wiki/Efficient_market_hypothesis
http://en.wikipedia.org/wiki/Modern_portfolio_theory#Criticisms
http://en.wikipedia.org/wiki/Gaussian_distribution
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it means that returns are greater than the expected. Most of the models have assumption 

that investors prefer stocks with the positive skewness return distribution. 

Kurtosis measures the degree of a distribution expressed as fat tails. Most of the 

investors are risk-averse which means that they prefer a distribution with low kurtosis, 

or we can explain differently as returns that are not far away from the mean. For 

normal distribution an excess kurtosis has to be equal to 0. When we have a case of a 

positive skewness, it means to become possible to have a high excess kurtosis and not 

to have extreme negative returns in the future as well as that the extreme returns will 

only be positive. This can happen when the skewness is positive. When we have 

negative skewness, investors can face the extreme negative returns due to the impact of 

a high excess kurtosis. In a case of return distribution with skewness lower than -1 and 

an excess kurtosis higher than 1, there is high probability to face sudden high negative 

returns increases (Ivanovski, Narasanov, and Ivanovska 2015). 

Finance literature proposed many different models to deal with these departures 

from Gaussian distribution, like the stable symmetric (stable Paretian) distributions for 

stock returns, the Student t, the generalized beta distribution of the second kind and 

mixtures of Gaussian distribution (Mills 1995). They explain this observed tail 

behavior of security returns. 

In probability theory, a random variable is said to be stable (or to have a stable 

distribution) if it has the property that a linear combination of two independent copies 

of the variable has the same distribution, up to location and scale parameters (Mills 

1995). Most of the researches in the finance literature are focused on stable 

distributions. However, we are witnesses that practical implementation of stable 

distributions to risk modeling has recently been developed and implemented in practice 

as a result of high complexity for appropriate fitting and simulating stable models. In 

order to make distinction between Gaussian and non-Gaussian stable distributions (so 

called stable Paretian, Lévy stable or α-stable distributions) we have to emphasize that 

stable Paretian tails decay more slowly than the tails of the normal distribution and can 

be used for prediction as well as to describe the extreme events present in the data 

(Rachev and Mittnik 2000). Student's t distribution as well as stable Paretian 

distributions have a parameter responsible for the tail behavior, called tail index or 

index of stability (Barndorff-Nielsen and Shephard 2001). 

Stable Paretian distributions (Mittnik et al. 1999) have attractive properties for 

empirical modeling in finance, because they include the normal distribution as a special 

case but also allow for heavier tails and skewness. Authors argue that the stable 

Paretian distribution gives rise to more realistic distributional models for returns on 

financial assets, such as stocks, futures or foreign exchange, because financial return 

data are typical heavy tailed and often skewed. The stable Paretian family allows for 

such phenomena without ruling out the normal distribution (Mittnik et al. 1999). 

A t-test is any statistical hypothesis test in which the test statistic follows a 

Student's t distribution. It can be used to determine if two sets of data are significantly 

different from each other, and is most commonly applied when the test statistic would 

follow a normal distribution if the value of a scaling term in the test statistic were 

known (Andersen et al. 2000).  

Similar to the Student's t distribution, stable distributions can be represented as 

mixtures of other distributions. The price and return dynamics can be considered under 

two different time scales- the physical time and an intrinsic (also called market) time. 

The intrinsic time is best thought of as the cumulative trading volume process which 

http://en.wikipedia.org/wiki/Probability_theory
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Independence_(probability_theory)
http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Up_to
http://en.wikipedia.org/wiki/Location_parameter
http://en.wikipedia.org/wiki/Scale_parameter
http://en.wikipedia.org/wiki/Statistical_hypothesis_testing
http://en.wikipedia.org/wiki/Test_statistic
http://en.wikipedia.org/wiki/Student%27s_t-distribution
http://en.wikipedia.org/wiki/Normal_distribution


Zoran Ivanovski, Toni Stojanovski, and Zoran Narasanov. 2015. Volatility and Kurtosis of Daily Stock Returns at 
MSE. UTMS Journal of Economics 6 (2): 209–221. 

 

213 

 

measures the cumulative trading volume of the transactions and can be considered as a 

measure of market activity (Rachev and Mitnik 2000). 

Financial market volatility is central to the theory and practice of asset pricing, asset 

allocation, and risk management. Volatility, however, is only one of the distributional 

moments that can provide a stylized representation of returns (Gabrielsen et al. 2012).  

One of the popular models used for volatility measurement is the equally weighted 

moving average model. This framework assumes that the N-period historic estimate of 

variance is based on an equally weighted moving average of the N-past one-period 

squared returns (Gabrielsen et al. 2012). However, under this formulation all past 

squared returns that enter the moving average are equally weighted and this may lead 

to unrealistic estimates of volatility (Gabrielsen et al. 2012).  

In order to overcome mentioned inconsistency the exponentially weighted moving 

average (EWMA) framework was proposed by J.P Morgan’s Risk Metrics TM that 

assigns geometrically declining weights on past observations with the highest weight 

been attributed to the latest (i.e. more resent) observation (Gabrielsen et al. 2012). By 

assigning the highest weight to the latest observations and the least to the oldest the 

model is able to capture the dynamic features of volatility (Barndorff-Nielsen and 

Shephard 2001). 

Other approaches in this direction are the very often used ARCH and GARCH 

model proposed by Engle and Bollerslev (1986). Bollerslev is author of the 

Autoregressive Conditional Heteroscedasticity (ARCH), which models the variance of 

a time series by conditioning it on the square of lagged disturbances and the latter 

generalizes the ARCH model by considering the lagged variance as an explanatory 

variable. Some authors (Gabrielsen et al. 2012) provides an insight to the time-varying 

dynamics of the shape of the distribution of financial return series by proposing an 

exponential weighted moving average model that jointly estimates volatility, skewness 

and kurtosis over time using a modified form of the Gram-Charlier density in which 

skewness and kurtosis appear directly in the functional form of this density (Gabrielsen 

et al. 2012).  

Concerning volatility at MSE, in his paper (Kovacic 2007) analyzes a volatility of 

stock market index in Macedonia. In fact this study for the first time present results for 

volatility at MSE. MSE was not previously considered in the volatility literature. He 

uses formal statistical tests and graphs of the MBI-10 returns, corresponding functions 

and estimated GARCH-type models and derive several conclusions: a) that large 

changes in returns at MSE tend to be followed by large changes and small changes tend 

to be followed by small changes, which means that volatility clustering is observed in 

the Macedonian financial returns series; b) the results related to the relationship 

between returns and conditional volatility can be regarded as quite robust across the 

models and alternative error distributions; c) the forecasting performance of 

asymmetric GARCH models (GJR and TGARCH in particular) is better than 

symmetric GARCH models, but with little gain (Kovacic 2007). However, Kovacic 

also emphasizes some certain reservations about his conclusion, due to the fact that the 

time series of returns is quite short.  
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2. TOOLS FOR DERIVATION OF STOCHASTIC PARAMETERS 

 

The aim of this study is to investigate the nature and dynamics of the shape of the 

distribution of the stock daily returns over time at MSE in order to determine if they 

have Gaussian distribution. We use an Exponentially Weighted Moving Average and 

Rolling Window Moving Average Estimator to determine the level of volatility of daily 

stock returns, and then calculate kurtosis to test the accuracy of the assumption that the 

stock returns are normally distributed.  

Valuation of financial instruments depends strongly on volatility estimates. There 

are two broad approaches: historical and implied volatility. The historical approach 

assumes that past holds predictive power for the future. On the other hand, implied 

volatility is calculated from the assumption that the market prices implicitly contain a 

consensus estimate of volatility (Andersen et al. 2000). 

Even for historical volatility there exist several models. Different models can result 

in different estimates. EWMA and GARCH models analyses the dynamic structure of 

volatility, and provide accurate forecasting for future behavior of risk. Therefore, they 

should provide more accurate results than constant, rolling window volatility models. 

Historical approaches have two steps in common: (i) Calculate the series of periodic 

returns; (ii) Apply a weighting scheme.  

First, for each day, we take the natural log of the ratio of stock prices. 
 

)ln(
1


i

i
i

S

S
  

 
(1) 

 
This produces a series of m-1 daily returns e.g. from μ2 to μm, if there are price 
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Second step estimates the variance from the same series of daily returns, as shown 

next. 

 

 
2.1. Rolling Window Moving Average Estimator 

 

The historical or n-period rolling window moving average estimator of the volatility 

corresponds to the standard deviation and it is given by the following expression 
 




 

t

nts

st
n

1

2
1 )(

1
ˆ   
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where rs is the return of the asset at period s and m is the mean return of the asset. 

The size n is critical when one considers the effect of an extremely high or low 

observation in the sense that the smaller the size of the window, the bigger the effect on 

volatility. 
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The weakness of this approach is that all returns have the same weight and 

yesterday's (very recent) return has no more influence on the variance than last month's 

return. 

 

 
2.2. Exponential Wighted Moving Averages Estimator 

 

The problem of Rolling Window Moving Average Estimator is fixed by using the 

exponentially weighted moving average (EWMA), in which more recent returns have 

greater weight on the variance. EWMA calculations is given by the square root of 
 

222
1 ))(1(ˆˆ   ttt  (4) 

 
where λ is the decay factor (smoothing constant). This method uses the weights that 

are geometrically declining, so the most recent observation has more weight compared 

to older ones. This weighting scheme helps to capture the dynamic properties of the 

data. Commonly, the smoothing constants are 0.94 for daily data and 0.97 for monthly 

data (Suganuma 2000). 

 

 
2.3. Kurtosis 

 

Kurtosis (Kenney and Keeping 1951) characterizes the relative peakedness or flatness 

of a distribution compared with the normal distribution. For a random variable x 

kurtosis is defined as  

 
  

3Kurt
4

4







xxE
x  

 
(5) 

 

where   4
xxE   is the fourth moment around the mean, and  σ is the standard 

deviation of x. For a data series e.g. daily returns {μi}, kurtosis Kurt[μi] is calculated as  
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(6) 

 
Distributions with zero kurtosis are called mesokurtic. Normal distribution has zero 

kurtosis. Distributions with high kurtosis distribution are called leptokurtic, and tend to 

have a distinct peak near the mean, decline rather rapidly, and have heavy tails. 

Distributions with negative kurtosis (platykurtic) have a flat top near the mean and 

shorter, thinner tails. 

In the following sections histograms will be calculated for daily stock returns, and 

then kurtosis will be used to measure the assumption that the stock returns are normally 

distributed.  

 

 
3. ANALYSIS OF MARKET DATA 

 

In this paper we test the accuracy of assumptions of the Gaussian distribution of stock 

returns and calculate the kurtosis of stocks on Macedonian stock exchange. Statistical 

analysis of historical data on stock prices from Macedonian stock markets is given. 
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MSE is an emerging stock market with very low liquidity. The aim is to determine the 

model parameters for various models for the stock pricing process.  

While we draw our conclusions from the historical data on MSE, we consider this 

stock market as good representative of emerging markets. Therefore, we argue that our 

results are valid for other similar stock markets. 

Following table gives stochastic parameters for 10 stocks from MSE and its index 

MBI-10. Last row give the average value for the same parameters.  

 
Table 1. Stochastic parameters for MSE 

ISIN Code          Kurt      σ      σσ MA    σσ EWMA 

ALK  4.10 0.0232 0.00856 0.00791 
BESK  7.40 0.0270 0.01265 0.00903 

GRNT 
 

3.31 0.0271 0.01070 0.00825 
KMB  4.54 0.0227 0.00875 0.00770 
MPT  7.21 0.0256 0.00777 0.00806 
REPL  27.27 0.0213 0.00937 0.00785 
SBT  9.79 0.0210 0.00615 0.00684 
STIL  32.55 0.0342 0.01907 0.01361 
MTUR  8.72 0.0190 0.00551 0.00521 

TPFL  5.41 0.0242 0.00874 0.00806 
MBI  5.61 0.0167 0.00548 0.00636 
MSE  10.54 0.0238 0.00934 0.00808 

Note: Column headings are as follows: (1) Stock code; (2): Kurtosis of the daily 
return series; (3): Volatility of the daily return series; (4): Volatility of the volatility 
sequence calculated using rolling window moving average; and (5): Volatility of the 
volatility sequence calculated using exponentially weighted moving average. 

 
Kurtosis values of individual stocks at MSE are presented on following histograms: 

 

 
                      Figure 1. Histogram for ALK. Kurt = 4.10. 
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Figure 2. Histogram for REPL. Kurt = 27.27. 

 
 

 

Figure 3. All histograms for daily stock returns at MSE. 

 
 

 

Figure 4. Histogram for stock price, daily return μ, 90-days rolling 
window moving average estimator of the volatility σw90, and EWMA 
estimator of the volatility σEWMA for MSE. 
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Figure 5. Histogram for stock price, daily return μ, 90-days rolling 
window moving average estimator of the volatility σw90, and EWMA 
estimator of the volatility σEWMA. for SBT. 

 

 

Figure 6. Histogram for stock price, daily return μ, 90-days rolling 
window moving average estimator of the volatility σw90, and EWMA 
estimator of the volatility σEWMA for GRNT. 

 

 

Figure 7. Histogram for stock price, daily return μ, 90-days rolling 
window moving average estimator of the volatility σw90, and EWMA 
estimator of the volatility σEWMA for MBI-10 index 
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Figure 8. Histogram for stock price, daily return μ, 90-days rolling 
window moving average estimator of the volatility σw90, and EWMA 
estimator of the volatility σEWMA for ALK 

 

 

Figure 9. Histogram for stock price, daily return μ, 90-days rolling 
window moving average estimator of the volatility σw90, and EWMA 
estimator of the volatility σEWMA for KMB 

 

 

Figure 10. Histogram for stock price, daily return μ, 90-days rolling 
window moving average estimator of the volatility σw90, and EWMA 
estimator of the volatility σEWMA for REPL 
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Several conclusions can be made from Table 1 and histograms. It is obvious that 

histograms of the daily return series for all stocks from MSE are leptokurtic, with no 

exception. This means that significant variations in the daily prices are much more 

common than estimated by the normal distribution.  

All MSE stocks have large kurtosis values. This means that large daily changes i.e. 

heavy tails occur more frequently on some MSE stocks. However, such changes are not 

immediately followed by the all other stocks on MSE, which results in reduced overall 

impact on MBI-10 changes. This explains why MBI-10 index has smaller kurtosis than 

individual stocks. The highest kurtosis have stocks at MSE with very small liquidity 

(REPL, STIL).  

The impact of higher kurtosis for MSE stocks did not signalize significant stock 

price changes because in period 2011-2013 due to the bearish trend high drops or peaks 

of stock prices not happened.  Comparing columns 4 and 5, one can readily see that the 

values for volatility of the volatility sequence are very similar when calculated using 

rolling window moving average and exponentially weighted moving average methods. 

 

 
CONCLUSION 

 

We can conclude that histograms of the daily return series for all stocks from MSE are 

leptokurtic, with no exception. This means that significant variations in the daily prices 

are much more common than estimated by the normal distribution. 

Kurtosis have large values for MSE stocks. This means that large daily changes i.e. 

heavy tails occur more frequently on some MSE individual stocks. However, such 

changes are not immediately followed by the all other stocks on MSE, which results in 

reduced overall impact on MBI-10 changes. This explains why MBI-10 index has 

smaller kurtosis than individual stocks. Highest kurtosis have stocks at MSE with the 

smallest liquidity (REPL, STIL).  

The impact of higher kurtosis for MSE stocks did not signalize significant stock 

price changes because in period 2011-2013 due to the bearish trend high drops or peaks 

of stock prices not happened. We find that the values for volatility of the volatility 

sequence are very similar when calculated using rolling window moving average 

(RWMA) and exponentially weighted moving average methods (EWMA). We can see 

from the histogram of daily returns that they do not follow the Gaussian curve and that 

they are with heavy tails. The distribution of the MBI-10 returns is characterized not 

only by heavy tails, but also by a high peakedness at the center. This findings confirm 

the already mentioned conclusion of Kovacic paper (Kovacic 2007). 

The empirical results show the following: (i) the Macedonian stock returns time 

series display stylized facts such as volatility clustering and high kurtosis (Kovacic 

2007); (ii) the histograms of returns and a Gaussian density shows that numerous 

returns are highly unlikely to have the Gaussian distribution and are with heavy tails. 

This study outlines directions for future researches that could be investigated to 

improve the modeling and volatility forecasts of the Macedonian stock market returns. 

Due to the fact that we use ten-year time series of returns (2005–2014), longer time 

series would allow estimation with greater precision.  
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